1 . To find the sets X and Y based on the given information, we need to interpret the provided conditions step by step. ### Given: 1. X ∪ Y = { 1 , 2 , 3 , 5 , 6 , 8 , 9 , 10 } 2. X ∩ Y = { 1 , 5 } 3. Y − X = { 2 , 6 , 9 , 10 } ### Step 1: Using Y − X From condition 3, we know that: Y − X = { 2 , 6 , 9 , 10 } This means that the elements 2 , 6 , 9 , and 10 are in Y but not in X . Therefore, we can express Y as: Y = ( Y − X ) ∪ ( X ∩ Y ) Since X ∩ Y = { 1 , 5 } , we can write: Y = { 2 , 6 , 9 , 10 } ∪ { 1 , 5 } = { 1 , 2 , 5 , 6 , 9 , 10 } ### Step 2: Using X ∪ Y Now, we know: X ∪ Y = { 1 , 2 , 3 , 5 , 6 , 8 , 9 , 10 } And we have Y = { 1 , 2 , 5 , 6 , 9 , 10 } . Now we can find X : X = ( X ∪ Y ) − Y This gives us: X = { 1 , 2 , 3 , 5 , 6 , 8 , 9 , 10 } − { 1 , 2 , 5 , 6 , 9 , 10 } Calculating this, we get: X = { 3 , 8 } ### Step 3: Verification Now we need to verify if the derived sets satisfy all the conditions. - **Checking X ∪ Y **: X ∪ Y = { 3 , 8 } ∪ { 1 , 2 , 5 , 6 , 9 , 10 } = { 1 , 2 , 3 , 5 , 6 , 8 , 9 , 10 } (True) - **Checking X ∩ Y **: X ∩ Y = { 3 , 8 } ∩ { 1 , 2 , 5 , 6 , 9 , 10 } = { 1 , 5 } (True) - **Checking Y − X **: Y − X = { 1 , 2 , 5 , 6 , 9 , 10 } − { 3 , 8 } = { 2 , 6 , 9 , 10 } (True) ### Conclusion Thus, the sets X and Y are: X = { 3 , 8 } Y = { 1 , 2 , 5 , 6 , 9 , 10 }
-
Attach answer script
View Answer | Discuss in Forum | Workspace | Report |